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Photonic band gaps hold great promise to efficiently con-
fine, conduct and steer light in integrated structures.
Going beyond conventional index-guiding arrangements,
photonic band gap systems can achieve a remarkable
degree of control over optical wave packets, similar to
electrons in semiconductor heterostructures [1,2]. Con-
sequently, such notions have been at the focus of intense
research over the past twenty-five years. Going beyond
the analogy to solid state physics, band gap structures
have been successfully employed in a number of distinctly
optical applications of high technological relevance,
ranging from hollow-core photonic crystal fibers for chan-
neling intense laser beams [3] and highly nonlinear micro-
structured fibers for super-continuum generation [4] to
omnidirectional mirrors [5], efficient optical filters [6],
and switches [7], to name just a few. Finally, photonic
band gap structures have been instrumental to a variety
of studies on fundamental concepts, such as Anderson
localization [8,9] and discrete solitons [10–13] in periodic
media. The underlying mechanism enabling most of these
effects, namely the capability to localize, channel, and
manipulate the electromagnetic energy in defect modes,
is clearly one of the most important aspects of photonic
band gap structures.
Interestingly, band gaps are by no means an exclusive

feature of periodic structures. Contrary to conventional
wisdom, amorphous systems are indeed capable of ex-
hibiting well-defined gaps in their spectrum of eigen-
states—despite the fact that the absence of any long-
range order prohibits Bragg scattering [14–16]. Further-
more, photonic band gaps have also been observed in
amorphous systems in the microwave regime [17]. Only
recently, the concept of amorphous band gaps was intro-
duced to the field of optics, and subsequently investi-
gated in liquid-like arrangements of waveguides [18].
In these experiments, the guiding of light by means of
an isolated defect state residing deep inside the gap could
be demonstrated. Yet, to this date, no systematic inves-
tigation of the fundamental nature of amorphous band
gap defect states has been undertaken to our knowledge.
While one might certainly expect them to inherit some
characteristics of their counterparts in periodic settings,

the stochastic properties of an amorphous environment
will undoubtedly have a profound influence on the nature
of the interaction between such defect states. The ques-
tion naturally arises as to how individual defects may in-
teract with one another, and over which distances this
interaction can take place. In this Letter, we present a
comprehensive study of coupled defect states residing
in the band gap of disordered photonic lattices. We ex-
perimentally observe and theoretically describe a distinct
enhancement of long-range coupling by virtue of the
amorphous environment.

The transfer of optical power between localized modes
of any system can formally be described in terms of cou-
pling between their modal amplitudes, e.g., a1, a2 [19].
The resulting equation
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governs the dynamics of light propagating in this arrange-
ment along the longitudinal coordinate z, as mediated by
the Hamiltonian ℋ � �βc c0�. Here, β represents the detun-
ing between the interacting defect states, and the coeffi-
cient c indicates the strength of coupling between their
respective wave functions. A tuned system with identical
defects is characterized by β � 0, whereas β ≠ 0 corre-
sponds to defect waveguides of different propagation
constants. With the two eigenvalues λ� � �β∕2� �
��1∕4�β2 � c2�1∕2 of ℋ, one can define the quantity κ �
�1∕2�jλ� − λ

−

j to describe the effective “hopping rate,”
or beating frequency, between the two states. In a fully
deterministic system, e.g., a directional coupler, or two
defect states in a photonic crystal, β is constant, and
the effective hopping rate is given by [20]
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On the other hand, the influence of an amorphous envi-
ronment manifests itself as a random detuning β. In our
study we model this stochastic quantity as an ensemble
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obeying a uniform distribution around the tuned regime,
i.e., βsto ∈ �−s∕2; s∕2�, where each individual βsto corre-
sponds to a specific realization of the background lattice
[see e.g., Fig. 1(a)].
On a fundamental level, this problem is related to “ran-

dom matrices,” a field of research pioneered by Wigner
[21]. Using the eigenvectors of ℋ, one can compute an
expectation value for the stochastic hopping between
the defect states, which takes the form
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Whereas the first term in this expression is reminiscent of
the deterministic case [compare to Eq. (2)], the second
term is of entirely stochastic origin and may cause signifi-
cant deviations from the ordered regime. Surprisingly, it
is strictly positive: any amorphous environment neces-
sarily accelerates the hopping between enclosed defect
states. Note that this enhancement is inherently linked
to the ratio s∕c. Naturally, the expectation value con-
verges to the deterministic case in the limit of vanishing
disorder:

lim
s→0

hκstoi � c: (4)

On the other hand, for a given fixed value s � const:, the
strength of this unusual influence of randomness depends
on the coupling, as shown in Fig. 1(b) in comparison
to the behavior in tuned and deterministically detuned
couplers. Taking into account the relation c�d� between
coupling c and spatial separation d in a physical system,
this means that the overall hopping is composed of a con-
stant effective detuning and distance-dependent term.
Note that for any nonzero detuning, be it deterministic
or stochastic in nature, κ retains a finite value for zero
coupling. This of course does not translate to an actual
power transfer over infinite distances. Instead, the inten-
sity “beating contrast”

K � 1 −
minzja1�z�j2
maxzja1�z�j2

� c2

β2 � c2
(5)

between the channels of any deterministically detuned
coupler (β ≠ 0) vanishes as c approaches zero.
In order to observe the consequences of these findings,

we employed the femtosecond laser inscription tech-
nique [22,23] to fabricate various amorphous photonic
lattice configurations in fused silica glass. Each realiza-
tion was comprised of 250 waveguides and featured a
propagation length of 25 mm. Owing to the specifics
of the fabrication method, the waveguides exhibited
elliptical cross-sections (11 μm × 3 μm) with a refractive
index contrast of Δn � 9 · 10−4 on top of the bulk refrac-
tive index n0 � 1.45. Within each lattice, we embedded a
coupled pair of identical defect waveguides fabricated at
slightly higher writing velocities. The resulting index con-
trast of Δnd � 5 · 10−4 yielded a negative detuning with
respect to the discrete environment, thereby placing the
respective propagation constants within the band gap of
the structure. The surrounding lattice sites were arranged

according to a liquid-like model to ensure the absence of
any long-range order and the associated Bragg reflection
[18]. As a reference representing the deterministic case,
similar pairs of identical waveguides (Δn � 5 · 10−4) were
fabricated without a background lattice.

Figure 2(a) shows a representative example micro-
graph of an amorphous lattice. As can be seen from the
output facet of the sample [Fig. 2(b)], light launched into
one of the defect waveguides is gradually transferred be-
tween the defect states upon propagation in accordance
with the stochastic perturbation brought about by the
random positioning of the background lattice. In total,
we characterized the hopping between the defect wave-
guides by taking the ensemble average over 11 respective
realizations for each of the 9 different values of the defect
spacing. The evolution dynamics were directly observed
by means of waveguide fluorescence microscopy [24]
at a wavelength of 633 nm [see Figs. 2(c) and 2(d)]. This
approach allowed us to precisely retrieve the beating
length LB, without any ambiguities due to the periodic
propagation pattern. The value of the hopping rate
was then calculated with κ � π∕2LB and compared to
the deterministic reference. In full agreement with the

Fig. 1. (a) Schematic of two defect waveguides (red) em-
bedded within various realizations of an amorphous environ-
ment (black). The propagation constants associated with the
defects (red) reside within the photonic band gap of the
structure. (b) Periodic intensity transfer between two coupled
waveguides. Bottom: tuned coupler; top: deterministically de-
tuned coupler (β � c0); and center: coupler in amorphous envi-
ronment, displaying a stochastic detuning, as schematically
indicated by the traces of individual realizations. (c) Depend-
ence of the hopping rate κ associated with these examples
on the coupling coefficient c. For all values of c, the stochastic
parameter of the amorphous environment was fixed (s � c0).
All quantities are normalized with respect to the scale of an
arbitrary coupling c0.
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theoretical predictions the experimental data show that
with spacings greater than 16 μm, the hopping is notably
and systematically enhanced in the presence of an amor-
phous environment [see Fig. 2(e)].
The statistical character of our observation gives rise

to an increasing standard deviation of the hopping with
spacing, as shown in Fig. 3(a). Nevertheless, we detected
a clear signature of the predicted hopping enhancement
in our experiments. Figure 3(b) illustrates the increasing
deviation between the mean-square and square-mean
hopping for large spacings, which serves as a measure
for the probability distribution of the random detuning.
This provides direct experimental proof of the nondeter-
ministic acceleration in the hopping dynamics between

the defect waveguides mediated by the amorphous
environment.

In conclusion, we have theoretically and experimen-
tally explored the coupling dynamics between defect
states embedded within amorphous lattice environ-
ments. Our results clearly demonstrate that in the ensem-
ble average, the presence of a random environment
tends to systematically increase the hopping rate be-
tween localized defect waveguides. A similar behavior
can be expected in randomly detuned systems of non-
identical defects. Due to the general nature of the under-
lying mathematical framework, our results are applicable
to the dynamics of coupled defects in any amorphous
systems, in optics and beyond.
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